The Public Economics of Changing Longevity

Pierre Pestieau and Grégory Ponthière

April 2012

The purpose of this paper is to provide an overview of the effects that changing longevity may have on a number of public policies designed for unchanged longevity.

- Key stylized facts about longevity increase
- Simple lifecycle model with risky lifetime
- Normative foundations
- Effects of changing longevity on public policy

- ▶ Rise in life expectancy at birth
- Convergence across countries
- Increasing differences across individuals: genders, income, education
- Rectangularization first increasing and then stalling

Figure: Period life expectancy at birth (total population) (years (1947-2009)

Figure: Period life expectancy at birth, men and women (years), France, 1816-2009

A ►

Э

Figure: Period surival curves, women, France, 1816-2009

2.1. Demography

Life composed of two periods:

- the young age (first period)
- the old age (second period) with survival probability π ($0<\pi<1)$ and length ℓ ($0<\ell<1)$

$$LE = \pi (1 + \ell) + (1 - \pi)1 = 1 + \pi \ell$$
(1)

$$VAR = \pi (1 + \ell - (1 + \pi \ell))^{2} + (1 - \pi) (1 - (1 + \pi \ell))^{2}$$

$$= (1 - \pi) \pi \ell^{2}$$
(2)

Figure 4: shifts of the survival curve in a two-period model.

► Endogeneity of the length of life $\ell(\cdot)$ and of the survival function $\pi(\cdot)$:

$$\pi \equiv \pi \left(\boldsymbol{e}, \boldsymbol{\varepsilon}, \boldsymbol{\alpha} \right) \tag{3}$$

- e : health efforts made by the individual, efforts that can take various forms (food diet, physical exercise, etc.), while
- $\blacktriangleright \ \varepsilon$: genetic background of the individual, and
- α : degree of knowledge of the individual

2.2. Preferences

$$U = \pi [u(c) + \ell u(d)] + (1 - \pi) [u(c) + 0]$$

= $u(c) + \pi \ell u(d)$ (4)

Bommier's critique

lottery A:
$$c = d = \overline{c}, \ \pi = 1 \ \text{and} \ \ell = 1/2.$$
lottery B: $c = d = \overline{c}, \ \pi = 1/2 \ \text{and} \ \ell = 1$

The expected utility under each lottery is exactly the same, and equal to:

$$u(ar{c})+rac{1}{2}u(ar{c})$$

Concave transform $V(\cdot)$ of the sum of temporal utility.

$$\pi V [u(c) + \ell u(d)] + (1 - \pi) V [u(c)]$$
(5)

Expected utility of lotteries A and B

$$V\left[u(ar{c})(1.5)
ight] > 0.5 V\left[2u(ar{c})
ight] + 0.5 V\left[u(ar{c})
ight]$$

3.1. Inequality aversion

Two types of agents in the population:

- \blacktriangleright type-1 agents (proportion ϕ) are long-lived, and
- type-2 agents are short-lived

LF (same wage)

$$c_1 = d_1 = \frac{w}{2} < c_2 = w$$

 $U_2 = u(w) < U_1 = 2u(\frac{w}{2})$

Utilitarian FB:

$$\max_{c_1,d_1,c_2} \phi \left[u(c_1) + u(d_1) \right] + (1-\phi) \left[u(c_2) \right]$$

s.t.
$$\phi c_1 + (1 - \phi)c_2 + \phi d_1 \le 2w$$

 $c_1 = c_2 = d_2 = \frac{2}{3}w$

Redistribution from the short-lived towards the long-lived.

Concavification of lifetime utilities:

$$c_1 = d_1 < c_2$$

- ∢ ≣ ▶

æ

3.2. Responsibility and luck

Two groups of agents i = 1, 2, whose old-age longevity ℓ_i is a function of genes ε_i and health efforts e_i . Type-1 has better longevity genes and lower disutility for effort.

$$\ell_i \equiv \varepsilon_i \ell\left(e_i\right)$$

LF problem:

$$\max_{c_i,d_i,e_i} u(c_i) - \delta_i v(e_i) + \varepsilon_i \ell(e_i) u(d_i)$$

s.t. $c_i + \varepsilon_i \ell(e_i) d_i \le w$

where $\delta_1 < \delta_2$ and $\varepsilon_1 > \varepsilon_2$.

$$c_{i} = d_{i}$$

$$\delta_{i}v'(e_{i}) = \varepsilon_{i}\ell'(e_{i}) \left[u(d_{i}) - u'(d_{i})d_{i}\right]$$

$$e_{1} > e_{2}$$

$$U_{1} > U_{2}$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

Optimum

 If δ₁ = δ₂ = δ̄, U₁ > U₂ implies redistribution from type-1 towards type-2.
 Compensation principle ("same responsibility, same

welfare") would require equality of utility:

$$u(c_{1}^{*}) - \bar{\delta}v(e_{1}^{*}) + \varepsilon_{1}\ell(e_{1}^{*}) u(d_{1}^{*}) = u(c_{2}^{*}) - \bar{\delta}v(e_{2}^{*}) + \varepsilon_{2}\ell(e_{2}^{*}) u(d_{2}^{*})$$

 If ε₁ = ε₂ = ε̄, U₁ > U₂ does not imply any action Responsibility principle ("equal luck, no intervention")

3.3. Ex ante versus ex post equality

All individuals *ex ante* identical with life expectancy $1 + \pi$.

LF

$$egin{aligned} \max_{c,d} u(c) + \pi u(d) \ ext{s.t.} \ c + \pi d &\leq w \ c &= d = rac{w}{1+\pi} \end{aligned}$$

where $\frac{1}{1+\pi}$ is the return of the annuity

• **Ex ante optimum**: maximize the *minimum* expected lifetime welfare.

Same as LF

Ex post optimum: maximize the minimum ex post lifetime welfare:

$$\max_{\substack{c,d\\ s.t.}} \min\{u(c) + u(d), u(c)\}$$

s.t. $c + \pi d \le w$

Assume that u(0) = 0.

 $c > d = \overline{c} = 0$

| □ ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → ���

4.1. Free-riding on longevity-enhancing effort

Negative effect that longevity enhancing spending can have on the cost of annuities. Private annuity saving and Pay-As-You-Go pension scheme.

$$U = u(w - \theta - s^* - e) + \pi(e)u(s^*(1 + r)/\pi(e) + \theta(1 + n)/\pi(e))$$
(6)

Optimal saving s^* is given by:

$$u'(c) = u'(d)(1+r)$$
 (7)

Health expenditure is given by:

$$\pi'(e)u(d) = u'(d)(1+r) + \pi'(e)u'(d)d$$
(8)

Ignorance of $\pi'(e)u'(d)d$ calls for a corrective Pigovian tax.

Tragedy of the Commons.

4.2. Optimal policy and heterogeneity

Individuals with 3 characteristics: $w_i, \alpha_i, \varepsilon_i$

$$U_i = u(h_i \mathbf{W}_i - s_i^* - e_i) - v(h_i) + \pi(e_i, \varepsilon_i, \alpha_i)u(s_i^*/\pi(e_i))$$

► Utilitarian Paternalist FB $\sum n_i \left[u(c_i) - v\left(\frac{y_i}{w_i}\right) + \pi(e_i, \varepsilon_i, 1) u(d_i) \right]$

subject to

$$\sum n_i \left(c_i + e_i + \pi \left(e_i, \varepsilon_i, 1 \right) d_i - y_i \right) = 0$$

• $w_2 > w_1$ implies $h_2 > h_1$

•
$$c_i = d_i = \overline{c} \forall i$$
.

ε_i > ε_j implies e_i > e_j if π_{εe} > 0, that is if both arguments are complements.

SB optimum

Asymmetric information on ε and w.

Two types

- $\alpha < 1$
- Type 2 mimicking type 1

$$u(c_2) + \alpha_2 \pi (\varepsilon_2, e_2) u(c_2) - v(h_2)$$

$$\geq u(c_1) + \alpha_2 \pi (\varepsilon_2, e_1) u(c_1) - v\left(\frac{y_1}{w_2}\right)$$

Outcome depends on the relative values of both w_i and ε_i and of the substituability of e and ε in the longevity function.

```
Tax on labor, \tau, saving, \sigma, health, \theta.
```

Table : Signs of taxes in the second-best

Second Best		BP	IC	MO	Total effect
$\pi_{\varepsilon e} > 0$	σ_1	0	+	-	?
$w_2 \geqslant w_1$	σ_2	0	0	-	-
and $\varepsilon_1 < \varepsilon_2$	θ_1	+	+	-	?
	θ_2	+	0	-	?
	$ au_1$	0	+	0	+
	$ au_2$	0	0	0	0

4.3. Retirement and social security

Individuals:

- ▶ 4 types denoted by kj with k = L, S and j = 1, 2
- same productivity w
- ▶ 2 levels of longevity: $\ell_S < \ell_L$
- ▶ 2 occupations with probability of long life: $\pi_2 > \pi_1$

The individual utility is given by:

$$U = u(c) + \ell u(d) - v(z; \ell)$$
(9)

with a budget constraint equal to

$$c + \ell d = w(1+z) \tag{10}$$

Choice of z

$$u'(d)w = v'(z;\ell) \tag{11}$$

with $dz/d\ell > 0$ if $dv'/d\ell < 0$.

Assume $\pi_1 = 0$ and $\pi_2 = 1$, then c=d for all types and $z_1 > z_2$.

Assume now $\pi_1 > 0$ and $\pi_2 = 1$. Then $U_{L1} > U_{L2}$.

Ex ante optimum: age of retirement will be lower than in the *ex post* one.

4.4. Long term care social insurance Case for LTC social insurance. Risk of dependence correlated with income through longevity.

General problem:

$$\max_{s,\theta} u\left((1-\tau)hw - v(h) - s - \theta + a\right) + \pi(1-\varphi)u\left(\frac{s}{\pi}\right) \\ + \varphi\pi H\left(\frac{s}{\pi} + g + \frac{\theta\gamma_p}{\varphi\pi}\right),$$

where θ is insurance premium, γ_p , loading factor, φ , probability of dependence, *a*, demogrant, *g*, social LTC benefit and τ , the payroll tax rate. No tax distortion, no loading factor, g = 0 and $\tau = 1$.

Tax distortion, a=0, and loading factor: no subsidy on θ and g > 0.

Identical results with non linear schemes.

4.5. Preventive and curative health care with endogenous longevity

Longevity function : $\ell(\alpha x, e)$, where α equals 1 for a rational individual, and 0 for a myopic one. $\ell_x < 0, \ell_e > 0$. The social planner - or a rational individual - maximizes:

$$U = u(c) + u(x) + \ell(x, e)u(d)$$

subject to the resource constraint:

$$c + x + e + \ell(x, e)d = w$$

A myopic individual maximizes in the first period:

$$U = u(w - s - x) + u(x) + \ell(0, e)u[(s - e)/\ell(0, e)]$$

In the second period, given x, he allocates his saving between d and e so as to maximize:

$$\ell(x,e)u((s-e)/\ell(x,e))$$

Need to subsidize (or tax) saving and tax the sin good.

5. Conclusion

Other topics:

- Poverty alleviation
- Public education and PAYG in a growth model with increasing (endogenous or not) longevity

Extension:

Most of the surveyed results rest on the utilitarian approach. Need to extend them to deal with the normative problems mentioned above.